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Abstract 

VIX and VSTOXX derivatives have been the story of success in terms of product innovation 

over the last five years. In this paper we use historical data on S&P500 and EURO STOXX 50, 

VIX and VSTOXX, and VIX and VSTOXX Futures to reveal linkages between these important 

series that can be used by equity investors to generate alpha and protect their investments during 

turbulent times. We consider for comparative performance purposes investment portfolios in 

U.S. and EU zone and also a long-short cross border portfolio. The econometric analysis is 

spanned by a battery of GARCH models from which we have selected the GARCH (1,1), the 

EGARCH and the GJR model as the best models for our data. Overall, investors with EURO 

STOXX 50 exposure can improve greatly the performance of their portfolio by adding 

VSTOXX futures. 
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Investment Strategies with VIX and VSTOXX 

 

1. Introduction 

1.1 Background 

“The CBOE Volatility Index (VIX) is a key measure of market expectations of near-term 

volatility conveyed by S&P500 stock index option prices. Since its introduction in 1993, VIX has 

been considered by many to be the world’s premier barometer of investor sentiment and market 

volatility.” – Website of CBOE 

 

Likewise, the VSTOXX index is also a volatility index, based on the expected volatility implied 

by EURO STOXX 50 options. There are  12 VSTOXX rolling indices with maturities equal to 

30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360 days to expiration. The calculation is 

done via linear interpolation of the two nearest subindices. Each of the 8 sub-indices per option 

expiry (1, 2, 3, 6, 9, 12, 18 and 24 months) is determined based on the square-root of the implied 

variance.  

 

The main attraction of the VIX and VSTOXX products lies in the negative correlation of these 

volatility indices with the corresponding equity market indices, usually explained by the leverage 

effect1. The evolution of S&P500 and VIX illustrated in Figure 1 and, respectively of EURO 

STOXX 50 and VSTOXX in Figure 2 seems to support the idea of a negative correlation, 

implying that adding VIX and VSTOXX positions (via futures contracts) would help in reducing 

the risk of diversified portfolios. This connection helped the growth of the volatility derivatives 

market to the extent that many investors perceive VIX and VSTOXX as an asset class of its 

own. 

The two graphs also indicate that there is a shock event in the equity space every time the 

volatility index crosses the corresponding equity index. One could then differentiate between the 

usual market jumps in volatility due to changes in policy, board announcements and takeover 

                                                           
1
  Any fall in equity prices leads to an increase in the company’s leverage, which in turn increases the risk 

posed to equity holders and therefore increases equity volatility. On the contrary, a decrease in equity 
prices leads to reduced leverage and then the risk posed to equity holders is reduced and equity volatility 
becomes smaller.  
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attempts, and the jumps directly related to crashes of significant importance such as Lehman 

Brothers in September 2008. 

 

 

Figure 1. Daily time series of S&P500 and VIX between 02-01-1990 and 01-03-2012. 

However, a very important question is the degree of correlation that is revealed by the data. 

Recall that the correlation concept that is usually invoked in this context is the Pearson linear 

correlation coefficient, for which we know that a value of 1 or -1 is equivalent with a linear 

relationship between the two variables.  As it can be observed from Figures A1 and A2 from 

Appendix B there is indeed evidence of a linear decreasing relationship for the series of 

logarithmic returns of the equity index and the corresponding volatility index but the gradient of 

the line fitted to the historical data is not -1. It is also clear that the daily returns for both equity 

indexes are between -10% and 10% whereas the returns for the volatility indexes are roughly 

speaking between -30% and 40% for VIX, and between -20% and 35% for VSTOXX. 
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Figure 2. Daily time series of EURO STOXX50 and VTOXX between 04-01-1999 and 24-02-

2012. 

Including volatility positions in an investment portfolio can be done either for portfolio 

diversification or for hedging purposes. The latter is true for portfolio managers that are tracking 

index equity portfolios and who are short volatility. When equity markets become highly volatile 

then the portfolio tracking error and the rebalancing costs increase but using volatility futures 

helps to hedge against these frictional costs. At the other extreme, the volatility futures contracts 

offer a direct play on the vega with no delta involved. Hence, speculative directional positions 

can be taken via VIX and VSTOXX futures. An interesting trading strategy is based on the 

correlation between the VSTOXX and VIX. A fund manager may buy be long VSTOXX 

volatility and short VIX volatility. A similar idea is to trade on the basis between VIX and 

VSTOXX, given the historical evolution between the two. 

The body of this paper is structured as follows: the following two sub-sections describe in some 

detail the VIX and VIX futures contracts and VSTOXX and VSTOXX futures contracts, 

respectively. Section 2 reviews the existing literature on volatility indices, while Sections 3 and 4 

focus on data, methodology and empirical results. In Section 5 some investment strategies based 

0

10

20

30

40

50

60

70

80

90

100

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

S
T

O
X

X
 5

0
 

Evolution of VSTOXX and STOXX50 

STOXX 50 VSTOXX



5 
 

on the findings in this paper are implemented and discussed. The final section puts forth a 

number of recommendations and conclusions. 

1.2 VIX and VIX Futures 

The VIX index has been introduced by Whaley (1993) and the methodology was further revised 

in 2003.  This index measures the market’s implied view of future volatility of the equity S&P500 

index, given by the current S&P 500 stock index option prices2. When constructing the VIX, the 

put and call options are near- and next-term, usually in the first and second S&P500 contract 

months. “Near-term” options must have at least one week to maturity. This condition is 

imposed in order to minimize pricing anomalies that might appear close to expiration. When this 

condition is violated VIX “rolls” to the second and third S&P500 contract months3.  

It is important to realize that the VIX is a measure of expected future volatility but it also 

incorporates the uncertainty on the market triggered by various bank crashes and crises. In 

Figure 3 we show the VIX levels versus the contemporaneous realized volatility on the S&P500 

index. Simon (2003) argued that market participants tend to consider extreme values of VIX as 

trading signals. Looking at the peaks of the realized variance, VIX is always under, predicting 

that the realized levels of volatility during market turbulence were unsustainable. Although the 

above example suggest that VIX is an accurate predictor of falling volatility, a more thorough 

analysis is needed in order to draw such an important conclusion. 

Considering the evolution of the VIX index depicted in Figure 3 it can be seen that it was 

relatively stable in the early 1990s, but started to be “volatile” from the last quarter of 1997 to 

the first quarter of 2003. Another clear milestone was the end of the year 2007 associated with 

the burst of the subprime crisis leading to spikes in the values of the VIX. The spikes in the time 

series of the VIX can be pinpointed to the Iraq war in early 1991, the Asian financial crisis of late  

                                                           
2 The CBOE changed the composition of the VIX on September 22, 2003. For the period January 2, 
1986, to September 19, 2003, the VIX was calculated from S&P 100 index option prices. From 
September 22, 2003, the calculation of VIX has been changed to S&P 500 index option prices. It can be 
argued that, since the S&P 100 and S&P 500 index portfolios are very similar, using the VIX history 
based on S&P 100 prices until September 22, 2003 (i.e. the cleaner, more accurate historical series), and 
then the VIX history based on S&P500 option prices, is an acceptable way to put together a historical 
VIX time series. The current methodology is independent of a pricing model, VIX being calculated in 
practice from market option prices. CBOE recalculated the VIX values under the current methodology 
from January 1, 1990. 
3 For example, on the second Friday in June, VIX should be determined from S&P500 options expiring 
in June and July. On the following Monday, July maturity will replace June as the “near-term” and August 
maturity will replace July as the “next-term.” 
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Figure 3. Comparison of time series of VIX, calculated under the post 2003 methodology, with 

the historical 10-day realized volatility, on the same day. The period covered is 16-01-1990 and 

01-03-2012. 

1997, the Russian and LTCM crisis of late summer 1998, and the 9/11 terrorist attacks. The post 

2007 spikes are associated with the Lehman Brothers collapse of 2008 and the emergence of the 

sovereign debt problems in Euro zone in 2010. 

Futures contracts on VIX have started trading on 26 March 2004 and options in February 2006. 

A Mini-VIX futures contract has been launched in 2009. 

1.2 VSTOXX and VSTOXX Futures 

The EURO STOXX 50 Index is constructed from Blue-chip companies of sector leaders in the 

Eurozone: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the 

Netherlands, Portugal and Spain. The EURO STOXX 50 Volatility Index (VSTOXX) index 

provides the implied volatility given by the prices of the options with corresponding maturity, on 

EURO STOXX 50 Index. By design the VSTOXX index is based on the square root of implied 

variance and it calibrates the volatility skew from OTM puts and calls. The VSTOXX does not 

measure implied volatilities of at-the-money EURO STOXX 50 options, but the implied 

variance across all options of a given time to expiry. This model has been jointly developed by 
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Goldman Sachs and Deutsche Börse such that using linear interpolation of the two nearest sub-

indices, a rolling index of 30 days to expiration is calculated every 5 seconds using real-time 

EURO STOXX50 option bid/ask quotes. The VSTOXX is calculated on the basis of eight 

expiry months with a maximum time to expiry of two years4. If there are no such surrounding 

sub-indices, nearest to the time to expiry of 30 days, the VSTOXX is calculated using 

extrapolation, using the two nearest available indices which are as close to the time to expiry of 

30 calendar days as possible. In the situation that there are no two such indices VSTOXX is 

calculated by extrapolation based on the nearest available indices, which are as close to 30 

calendar days as possible. 

 

The payoff of VSTOXX futures resembles more the payoff of a volatility swap, being 

determined by the difference between the realized 30 day implied volatility and the expected 30 

day implied volatility at trade initiation, times the number of contracts and the monetary size of 

the index multiplied (€100). 

The VSTOXX Short-Term Futures Index is designed to replicate the performance of a long 

position in constant-maturity one-month forward, one-month implied volatilities on the EURO 

STOXX 50. Similarly, the VSTOXX Mid-Term Futures Index replicates a constant 5-month 

forward, one-month implied volatility. The VSTOXX Short-Term Futures index aims to provide 

a return of a long position in constant maturity one-month forward one-month implied 

volatilities on the underlying EURO STOXX 50 Index. In addition, another EURO STOXX 50 

Index future contract has been launched in December 2010 on the Singapore Exchange, 

enabling investors to react to Asian market developments and trade the EURO STOXX 50 

before the opening of the European markets. This is a quanto type contract with a value of USD 

10 per index point. 

 

The graph in Figure 4 reveals the same type of conclusion as in the VIX case, that is the levels 

exhibit by the realized volatility during market turbulence are not sustainable and in the short 

term volatility will decrease. 

 

                                                           
4 Apart from the VSTOXX main index (which is irrespective of a specific time to expiry), sub-indices for 
each time to expiry of the EURO STOXX 50 options, ranging from one month to two years, are 
calculated and distributed. For options with longer time to expire, no such sub-indices are currently 
available. 
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Figure 4. Comparison of time series of VSTOXX with the historical 10-day realized volatility, on 

the same day. The period covered is 18-01-1999 and 24-02-2012. 

 

2. Literature Review 

2.1 The Relationship Between Implied Volatility and the Future Realized Volatility 

The question how well the implied volatility forecasts future realized volatility has been received 

a great deal of attention in the financial literature, the general conclusion being that implied 

volatility outperforms the known historical volatility measures, see Fleming (1995), Blair et.al. 

(2001), Corrado & Miller (2005). Becker et.al. (2006), however, found that VIX is not an efficient 

forecaster of future realized volatility and other historical volatility estimates can be superior to 

VIX alone. 

2.2 The Relationship Between Implied Volatility and Stock Returns 

Whaley (2000) was among the first to point out that there is a negative statistically significant 

relationship between the returns of stock and associated implied volatility indexes and moreover, 

positive stock index returns correspond to declining implied volatility levels, while negative 

returns correspond to increasing implied volatility levels. For the S&P 100 index, the relationship 
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is asymmetric, negative stock index returns are triggered by greater proportional changes in 

implied volatility measures than are positive returns. 

 

Carr and Wu (2006) argued that it is the S&P 500 index returns that predict future movements in 

the volatility index VIX and that volatility index movements do not have predictive power on the 

equity index returns. On the other hand, Cipollini and Manzini (2007), using the same 

methodology as in Giot (2005) and Campbell and Shiller (1998), identified a significant 

relationship between the VIX levels and the 3-months S&P 500 Index returns. This linkage is 

very strong following spikes in VIX while it is weaker at lower levels of VIX. Their trading 

strategy to invest in the S&P5 00 index based on the VIX signal outperforms the simple strategy 

of holding long the S&P 500 index, confirming wide spread belief in investment banking. 

 

Konstantinidi et al. (2008) discussed several models for implied volatility indexes including the 

VIX showing that the directional change can be forecasted using point and interval forecasts. 

The directional forecast accuracy can be improved by using GARCH models as demonstrated in 

Ahoniemi (2008). Compared with various standard time series models, an ARIMA(1,1,1) model 

with GARCH errors fits the historical VIX data well in this study, the directional accuracy of 

forecasts being close to 60% over a five year out-of-sample period. One major point made by 

Ahoniemi (2008) is that the addition of GARCH errors contributes significantly to forecast 

performance while the inclusion of S&P 500 returns in the model does not improve the 

directional forecasts. This is in line with Christoffersen and Diebold (2006), who demonstrate 

that it is possible to predict the direction of change of returns in the presence of conditional 

heteroskedasticity, even if it is not possible to predict the returns themselves.   

Banerjee et al.(2007) and Giot (2005) develop models that use the VIX to predict stock market 

returns. The latter investigates the link between contemporaneous relative changes in VIX and 

contemporaneous S&P500 returns, but also the relationship between the current VIX levels and 

the future stock index returns. Denoting tVIX the value of VIX index and by tOEX  the value of 

S&P100 index at time t, then , 1ln( / )VIX t t tr VIX VIX   and   , 1ln( / )OEX t t tr OEX OEX   are the 

logarithmic returns of the two indexes, then Giot (2005) fitted the regression 

 
, 0 0 1 , 1 ,VIX t t t OEX t t OEX t t tr D D r D r D               

 (1)
 

where tD is a dummy variable that is equal to 1 (0) when  ,OEX tr  is negative (positive) and 

1t tD D   . Based on this regression Giot concluded that negative returns for the stock index 
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are associated with much greater relative changes in the implied volatility index than are positive 

returns.   
 
Whaley (2009) discussed the observed VIX spikes during market unrest. He noted that when 

market volatility increases or decreases, respectively, the stock prices will fall, or rise respectively. 

The relationship between the rate of change on VIX and the rate of return on the corresponding 

S&P500 index (SPX) is more than one of proportionality and he argues that the change in VIX 

should rise quicker when the market falls than when the market rises, in line with the leverage 

argument proposed by Black. This hypothesis is tested using the following regression model 

 
, 0 1 , 2 ,VIX t SPX t SPX t t tr r r D        (2) 

Szado (2009) showed that adding VIX futures during the 2008 financial crisis to three base 

portfolios resulted in increased returns and reduced standard deviations. It was shown in the 

paper that when adding ATM VIX calls to the three base portfolios will increase portfolio 

returns but the effect on standard deviation was mixed, with more extreme results, not 

surprisingly given the extra leverage. Using VIX call options increased the profits during market 

drops but correspondingly also increased the standard deviation. The comparative analysis of 

buying S&P500 puts with the three base portfolios did not produced better results than when 

adding VIX Call options. Similarly, Chen et.al. 2011 demonstrated that adding VIX futures 

contracts can improve the mean-variance investment frontier so hedge fund managers for 

example may be able to enhance their equity portfolio performance, as measured by the Sharpe 

ratio. 

 
2.3 The Relationship between Implied Volatility Index and Its Futures Contract  

Brenner et.al (2007) showed that the term structure of VIX futures price is upward sloping while 

the term structure of VIX futures volatility is downward sloping. Dash and Moran (2005) 

discussed the advantages of using VIX as a companion for hedge fund portfolios.  

 
 

3.  Portfolio Diversification with VIX and VSTOXX 

3.1 Portfolio diversification with futures 

The theoretical argument tells us that, absent any market frictions, whenever we have a hedge 

instrument written on the same underlying as our original exposure and with maturity matching 

our hedge horizon a perfect hedge is possible. However, we are often in a situation where proxy 
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hedges (i.e. hedges on a different, but related underlying to the original exposure) are used. This 

could be for liquidity, cost or other reasons.  

Preliminary Analysis - Correlations 

In this subsection we compare the diversification effectiveness with VSTOXX vs. VIX-related 

instruments. As the effectiveness of the hedge will depend on the correlation between the 

original exposure and the hedge, we first consider the correlations between the EURO 

STOXX50 and VSTOXX daily log returns and between S&P 500 and VIX returns. We expect to 

find negative correlations between the returns on the two equity indices and those on their 

respective volatility indices. Figure 3.1 plots the 30-day historical correlations for these two pairs 

of variables, while Figure 3.2 compares the same 30-day historical correlations between EURO 

STOXX 50 returns and VIX and VSTOXX returns, respectively.  

 

 

Figure 3.1 30-day Historical Correlations: S&P 500 vs. VIX and EURO STOXX vs. VSTOXX 

Note: The correlations are computed for the daily log returns; each correlation estimate is based on the 30 working 

day sample pre-dating it. 

It is easily noticeable from these two figures that while the correlations between the EURO 

STOXX50 and VSTOXX are always negative, the correlations between S&P 500 and VIX are 

positive for part of the sample. We note that the period under consideration is January 1999 to 
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January 2012 and we recall that for the first part of the sample (i.e. January 1999 to 19th 

September 2003) the VIX was calculated based on the implied volatility of S&P 100 options. 

Therefore it is not surprising that for the period predating September 2003 the correlation 

between the S&P 500 returns and VIX is not so strongly negative, since for this period the VIX 

was actually based on a different index. It is worthwhile noting that for this period the VIX 

would be expected to prove a less efficient diversifier for a portfolio that tracks the S&P 500 

since, for the period to 22nd September 2003, the VIX calculation was based on the implied 

volatility of different index. The same argument applies to the use of the VIX as diversifier for 

portfolios resembling the EURO STOXX50. As it can be noticed from Figure 3.2, the 30-day 

historical correlation between the EURO STOXX 50 and VIX takes positive values for some of 

the sample days prior to 2006; also, while the correlation between EURO STOXX 50 and VIX is 

always negative post 2006, it is less so than the correlation between EURO STOXX 50 and 

VSTOXX. Moreover, the correlation between the EURO STOXX 50 and VSTOXX remains 

negative throughout the entire sample. Thus, the VSTOXX volatility index appears to be a more 

efficient diversifier for EURO STOXX investors that the VIX. 

 

Figure 3.2 30-day Historical Correlations: EURO STOXX50 vs. VSTOXX and VIX  

Note: The correlations are computed for the daily log returns; each correlation estimate is based on the 30 working 

day sample pre-dating it. 

 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
 STOXX50  VSTOXX STOXX50 VIX



13 
 

However, since the VIX and VSTOXX volatility indices are not investable instruments, in 

Figures 3.3. and 3.4 we consider the correlation between the daily log returns on the equity 

indices (S&P 500 and EURO STOXX 50) and the VIX and VSTOXX daily log returns.5 The 

nearest maturity futures contract is considered in both of these graphs. We note that correlations 

between the two equity indices and their respective volatility index futures returns remain 

negative throughout the sample periods considered; however, returns on the indices appear to be 

less correlated (i.e. the absolute value of correlations is lower) with the returns on the nearest 

maturity volatility index futures than with the returns on the respective volatility index. 

 

 

Figure 3.3 30-day Historical Correlations: S&P 500 vs. VIX and VIX Futures 

Note: The correlations are computed for the daily log returns; each correlation estimate is based on the 30 working 

day sample pre-dating it. 

                                                           
5
 VIX futures were introduced in 2004 and VSTOXX futures in 2009, hence Figures 3.3 and 3.4 only plot 

correlations for samples starting in 2004 and 2009, respectively. 
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Figure 3.4 30-day Historical Correlations: EURO STOXX 50 vs. VSTOXX and VSTOXX 

Futures 

Note: The correlations are computed for the daily log returns; each correlation estimate is based on the 30 working 

day sample pre-dating it. 

Rhoads (2011) notes that using only the front month VIX futures contract in a diversified 

portfolio can be sub-optimal ) in the long term (high costs, underperformance in bullish markets 

and overall underperformance in the long term and suggests using the front two months 

contracts. We therefore also plot in Figures 3.5 and 3.6 the correlation between the two equity 

indices under consideration and the second nearest maturity contract. We note that while the 

correlation between S&P 500 and the nearest maturity VIX futures was always negative, the 

correlation between the equity index returns and the second maturity VIX futures takes a few 

positive, albeit very small values in the first part of the sample. However, as Rhoads (2011) also 

notes, this could be due to the lighter trading of the contract in its early days – post 2007 the 

correlations with the second maturity futures returns are always negative. The correlations 

between the daily returns on the EURO STOXX 50 index and the daily returns on the 

VSTOXX (spot) and VSTOXX futures, both nearest and second nearest maturities (Figure 3.6) 

remain negative throughout the entire sample. 
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Figure 3.5 30-day Historical correlations: S&P 500 vs. VIX and VIX futures   

 

Figure 3.6 30-day Historical Correlations: EURO STOXX 50 vs. VSTOXX and VSTOXX 

futures 

To eliminate any influences coming from approaching time to maturity, we could construct a 

portfolio consisting of the two nearest maturities futures contracts, which each have dynamic 

weights linked to their remaining time to maturity: the closer the maturity, the lower the weight 

the respective future contract has. The fact that the dynamics of VIX and VSTOXX is not 

replicated closely by their futures contracts is in line with the conclusions in Moran and Dash 

(2007). 
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3.2 Portfolio performance with volatility diversification 

Following Szado (2009), for each of the volatility indices (i.e. VIX and VSTOXX) we consider 

the following portfolios which will be compared relative to the shocks in volatility: 

1. 100% equity – we will assume that the investor holds a portfolio that tracks the S&P 500 

or the EURO STOXX 50 indices, respectively. 

2. 60% equity + 40% bonds, where the bond exposure will be represented by a portfolio 

that resembles the Barclays US or Barclays EURO Total Return Indices, respectively 

A set of summary statistics for all the components of these portfolios as well as for the hedge 

instruments proposed below (i.e. VIX and VSTOXX futures) is given in Tables 3.1 and 3.2 

below. For the US Sample, the data ranges from March 2004 (when the VIX futures were 

introduced) to February 2012. By contrast, the European sample is shorter, since VSTOXX 

futures were only introduced at the end of April 2009. The US sample is split into two sub-

periods: a pre-crisis period (2004-2007) and a post-crisis period (2008-2012). We also analyze the 

returns of 2008 separately, as this is the period in which markets saw the most dramatic 

movements. As expected the volatility of the volatility-related assets, namely VIX and VSTOXX 

futures, is highest and the volatility of the bond indices is lowest; this is true for both samples 

(US and Europe) and for all sub-periods considered (in the US case). The range of returns is also 

widest for the volatility related assets, which exhibit both the highest maximums and the lowest 

minimums, again across both samples and all sub-periods. By contrast, bonds have the narrowest 

ranges of returns. 

 S&P500  Bond 
Index  

VIX 
first 
maturity 

VIX 
second 
maturity 

     Annualized mean return 2.63% 5.16% 1.36% 2.65% 
Volatility  22.27% 3.99% 79.61% 53.79% 
Min -9.47% -1.26% -29.48% -18.57% 
Max 2.13% 0.91% 36.02% 13.04% 
Skewness -0.2859 -0.0516 0.9363 0.6234 
Excess Kurtosis 9.7162 1.7630 5.6505 3.3574 
subperiod 1: 2004 - 2007     
Annualized mean return 7.57% 4.05% 3.47% 4.90% 
Volatility  12.10% 3.27% 70.54% 45.31% 
Min -3.53% -0.98% -29.48% -15.38% 
Max 2.88% 0.91% 36.02% 14.45% 
Skewness -0.3205 -0.0393 1.4064 0.8376 
Excess Kurtosis 1.9553 1.5829 11.9821 5.0127 
subperiod 2: 2008-2012     
Annualized mean return -1.85% 6.17% -0.56% 0.61% 
Volatility  28.53% 4.55% 87.08% 60.51% 
Min -9.47% -1.26% -23.13% -18.57% 
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Max 10.96% 1.33% 23.57% 17.00% 
Skewness -0.2133 -0.0736 0.6899 0.5207 
Excess Kurtosis 5.8829 1.2839 2.7090 2.3143 
crisis subperiod: 2008     
Annualized mean return -50.80% 5.47% 65.80% 63.25% 
Volatility  41.41% 5.93% 94.17% 60.86% 
Min -9.47% -1.26% -23.13% -18.57% 
Max 10.96% 1.24% 23.57% 12.82% 
Skewness -0.021 -0.1278 0.0069 0.0323 
Excess Kurtosis 3.6484 0.4911 2.8567 2.3229 

Table 3.1 Summary Statistics of log returns series for the portfolio components of U.S. Market 

Notes: The summary statistics are of the daily returns on the S&P 500 equity index, Barclays US Aggregated 

total return bond index from 26
h
 March 2009 to 17

th
 February 2012. The standard errors are approximately 

(6/T)1/2
 and (24/T)1/2

 for the sample skewness and excess kurtosis, respectively, where T is the sample size. The 

values of the t statistic for both the sample skewness and excess kurtosis indicate that returns for most of the 

assets considered follow non-normal distributions, generally leptokurtic. 

 

 Euro 
STOXX 
50 

Bond 
Index  
(EUR) 

VSTOXX 
Futures 
M1  

VSTOXX 
Futures 
M2  

Annualized mean return 2.17% 4.65% -12.85% -9.41% 

Volatility (annualized st dev) 25.49% 3.22% 77.76% 51.73% 

Min -6.54% -0.78% -17.38% -12.57% 

Max 9.85% 1.08% 21.22% 12.35% 

Skewness 0.0375 0.4037 0.7393 0.3868 

t-statistic Skewness 0.4036 4.3480 7.9620 4.1663 

Excess Kurtosis 3.0642 3.1098 2.5495 1.4323 

t-statistic Kurtosis 16.5014 16.7469 13.7297 7.7130 

Table 3.2 Summary statistics of log returns series for the portfolio components: European 

Market 

Notes: The summary statistics are of the daily returns on the EURO STOXX 50 equity index, Barclays EURO 

Aggregated total return bond index from 30
th

 April 2009 to 9
th
 February 2012. The standard errors are 

approximately (6/T)1/2
 and (24/T)1/2

 for the sample skewness and excess kurtosis, respectively, where T is the 

sample size. The values of the t statistic for both the sample skewness and excess kurtosis indicate that returns 

for all the assets considered follow non-normal distributions, all of them leptokurtic. 

 

The returns distributions are generally non-normal: with the exception of US bonds in the 2008 

sub-period, all the other returns distributions exhibit positive and highly significant (t-statistics 

higher than 7) values of the excess kurtosis. As expected, equity index returns are generally 

negatively skewed, while volatility futures returns exhibit positive skewness. 

We now turn to the construction and analysis of the volatility-diversified portfolios. Following 

Szado (2009), we pre-set the portfolio weights for the volatility futures to 2.5% and then 10%. 
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We shall relax this assumption in following sections where we shall consider alternative methods 

of (optimally) determining the level of these portfolio weights.  

Tables 3.3 and 3.4 summarize the performance of the volatility-diversified portfolios. We assume 

that the portfolios are rebalanced weekly. In order to be able to compute the Sharpe ratios 

reported in these tables, we use the 3-months Treasury Bill rates (secondary markets) in place of 

the risk free rate for the US portfolio. We employ the 3-month EURO LIBOR rate as the 

EURO risk free rate. 6  The results in Table 3.3 demonstrate that adding VIX futures has a 

beneficial effect on portfolio performance, improving mean return but most importantly 

reducing the volatility. Comparing the performance of the six portfolios under investigation it is 

also clear that, in normal times such as the period 2004-2007 adding VIX futures contract 

improves the mean return and produces an excellent Sharpe ratio and of course improves VaR 

risk measures7. Moreover, during turbulent times such as 2008-2012, there is a great benefit in 

having VIX futures in the investment portfolio, the mean return staying positive and Sharpe 

ratio being the best for the portfolios containing VIX futures positions. Looking at the event risk 

of 2008 it can also be remarked that extreme losses can be avoided if VIX futures positions are 

added. 

 

 SPX 97.5% SPX 
2.5% VIX 
Futures 

90% SPX   
10% VIX 
Futures 

60% SPX  
40% 
Bonds 

58.5% SPX   
39% Bonds   
2.5% VIX 
Futures 

54 % SPX  
36% Bonds  
10% VIX 
Futures  

All sample (2004- 2012)       

Annualized Mean return 5.11% 5.50% 6.76% 4.91% 5.36% 6.78% 

Volatility 22.25% 20.35% 15.80% 12.92% 11.34% 8.90% 

Min -9.03% -8.43% -6.90% -5.46% -4.86% -3.60% 

Max 11.58% 10.75% 8.39% 6.72% 6.10% 4.30% 

Skew -0.0390 0.0000 0.2670 -0.1179 -0.0409 0.8430 

Excess Kurtosis 9.9619 10.7259 12.3318 9.9720 11.3121 11.3938 

Annual Sharpe ratio 17.05% 20.53% 34.44% 27.77% 35.58% 61.32% 

VaR 1%(historical) 4.43% 4.04% 2.91% 2.50% 2.19% 1.55% 

                                                           
6

 In Tables x-y from the Appendix we investigate the robustness of our results to changing the 
assumptions. For example, in Table x we report the results obtained assuming daily rather than 
rebalancing. Moreover, results reported in Tables 3.3 and 3.4 assume that the notional amount of the 
futures is held in cash. An alternative would be to invest this amount in the risk free asset and post this as 
margin. We refer to this case as the ‘collateralized futures’ case. We examine the impact of 
collateralization in Tables x and xx from the Appendix. We note that whether or not we take into 
consideration the collateralization for marking to market the futures contracts, does not have an impact 
on our final conclusions.  
7
 Interestingly, when using daily rebalancing as shown in the appendix, during this period adding only 

2.5% VIX futures leads to a better performance than when adding 10% VIX futures. 
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VaR 5% (historical) 2.13% 1.94% 1.37% 1.22% 1.03% 0.64% 

subperiod 1: 2004 - 2007       

Annualized Mean return 8.30% 8.70% 9.91% 6.57% 7.02% 8.38% 

Volatility  12.09% 10.84% 8.94% 7.22% 6.22% 6.52% 

Min -3.47% -2.64% -1.90% -1.88% -1.40% -1.59% 

Max 2.92% 2.59% 3.64% 1.85% 1.41% 3.79% 

Skew -0.2767 -0.2321 0.7687 -0.2049 -0.1105 2.3308 

XS Kurt 1.9129 1.5462 3.7727 1.4816 0.8776 14.8792 

Annual Sharpe ratio 48.37% 57.59% 83.47% 57.04% 73.40% 90.84% 

VaR 1%(historical) 2.22% 2.00% 1.37% 1.22% 1.00% 0.77% 

VaR 5% (historical) 1.27% 1.10% 0.78% 0.76% 0.65% 0.49% 

subperiod 2: 2008-2012       

Annualized Mean return 2.21% 2.59% 3.90% 3.39% 3.85% 5.32% 

Volatility 28.50% 26.15% 20.10% 16.47% 14.51% 10.61% 

Min -9.03% -8.43% -6.90% -5.46% -4.86% -3.60% 

Max 11.58% 10.75% 8.39% 6.72% 6.10% 4.30% 

Skew -0.0005 0.0324 0.2081 -0.0790 -0.0134 0.4754 

XS Kurt 6.0670 6.5080 7.9647 6.2421 7.1060 8.3145 

Annual Sharpe ratio 6.75% 8.81% 17.95% 18.85% 24.52% 47.45% 

VaR 1%(historical) 5.24% 4.79% 3.60% 2.98% 2.68% 1.77% 

VaR 5% (historical) 2.90% 2.62% 1.88% 1.61% 1.35% 0.94% 

short crisis subperiod: 2008       

Annualized Mean return -42.23% -39.74% -31.95% -24.35% -22.07% -14.99% 

Volatility 41.37% 38.43% 30.36% 24.03% 21.61% 15.75% 

Min -9.03% -8.43% -6.90% -5.46% -4.86% -3.60% 

Max 11.58% 10.75% 8.39% 6.72% 6.10% 4.30% 

Skew 0.1999 0.2116 0.2942 0.0925 0.1310 0.3818 

XS Kurt 3.8773 4.0208 4.4947 3.8998 4.1829 4.9141 

Annual Sharpe ratio -104.37% -105.89% -108.39% -105.29% -106.49% -101.22% 

VaR 1%(historical) 8.24% 7.66% 6.22% 4.97% 4.47% 3.20% 

VaR 5% (historical) 4.52% 4.11% 2.90% 2.59% 2.23% 1.45% 

Tables 3.3: Performance of volatility-diversified US portfolios 

Notes: The performance statistics are of the daily relative returns on the different portfolios. The 

portfolios are weekly rebalanced, and the notional of the futures contracts is assumed to be held in 

cash (no collateralization of the futures).  
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STOXX 

97.5% 
STOXX  

2.5% 
VSTOXX 
Futures 

90% 
STOXX   

10% 
VSTOXX 
Futures 

60% 
STOXX   

40% 
Bonds 

58.5% 
STOXX   

 39% Bonds  
2.5% 

VSTOXX 
Futures 

54 % STOXX  
36% Bonds  

 10% 
VSTOXX 
Futures 

Annualized Mean return 5.42% 5.97% 7.68% 5.02% 5.58% 7.31% 

Volatility  25.51% 23.42% 17.92% 15.05% 13.28% 9.51% 

Min -6.33% -5.81% -5.21% -3.77% -3.22% -3.10% 

Max 10.35% 9.43% 6.78% 6.48% 5.72% 3.54% 

Skewness 0.1616 0.1765 0.1912 0.2552 0.3047 0.4004 

Excess Kurtosis 3.3844 3.3979 3.4526 3.9618 4.1059 3.9719 

Annualized Sharpe ratio 10.66% 13.98% 27.82% 15.45% 21.73% 48.45% 

VaR 1%(historical) 4.28% 3.83% 2.69% 2.65% 2.15% 1.42% 

VaR 5% (historical) 2.55% 2.32% 1.78% 1.57% 1.36% 0.88% 

Tables 3.4: Performance of volatility-diversified European portfolios 

Notes: The performance statistics are of the daily relative returns on the different portfolios. The 

portfolios are weekly rebalancing, and the notional of the futures contracts is assumed to be held 

in cash (no collateralization of the futures).  

A similar story follows from the results of Table 3.4, although this analysis covers only most 

recent period due to the availability of VSTOXX futures contracts introduced by EUREX. 

For the European case, our analysis shows that, for the period under analysis (i.e. May 2009 – 

February 2012), adding volatility exposure to an equity portfolio that tracks the EURO STOXX 

50 provides indeed risk diversification benefits: the volatility decreases from over 25% to under 

18% (i.e. a reduction of around 30%) for a 10% exposure to VSTOXX futures (nearest 

maturity). Downside risk, as measured by Value-at-Risk, computed using the historical 

methodology for two different significance levels, 1% and 5%, also decreases. Moreover, the 

average return also increases, from a (annualized daily) value of 5.42% to 7.68% (an increase of 

40%), resulting in a very significant increase in the annualized Sharpe ratio, from less than 0.06 to 

over 0.21, an almost 4-fold increase. A reduction in volatility coupled with an increase in returns 

is also obtained by investing as little of 2.5% of the portfolio value in VSTOXX futures, only 

that improvements are more moderate in this case. 
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Fig. 3.7 Comparative Performance of various portfolios based on S&P 500 

 

 

Fig. 3.8 Comparative Performance of various portfolios based on EURO STOXX 50 
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In Figures 3.7 and 3.8 we have compared various portfolios combining equity positions, bond 

positions and volatility index positions. Overall it can be seen that VSTOXX and VIX futures 

contracts can help investors to preserve positive returns after unexpected shocks in the equity 

markets. On the other hand, over periods of market calmness, the futures contracts are more of 

a break, confirming similar analyses in Szado (2009) and Rhoads (2011). 

 

4.  Modelling the VIX-VSTOXX difference 

In this section we investigate the nature of the difference between the VIX and VSTOXX 

volatility indices. If significant, we seek to exploit this difference in a trading strategy, hence we 

work with futures prices on the two volatility indices rather than with their respective spot levels. 

Since these are the most actively traded contracts, we employ the nearest maturity futures 

contracts both for the VIX as well as for the VSTOXX. We start by testing whether this 

difference is statistically significant and we then proceed to modelling the stochastic behaviour of 

the difference by means of discrete-time GARCH modelling.  

 

 

Figure 4.1 VIX-VSTOXX Futures Historical Difference 

Figure 4.1 plots the daily series of differences between the VIX and the VSTOXX nearest 

maturity futures prices, for a period of over 3 years, ranging from 30th April 2009 (when the 

futures contracts on VSTOXX were first introduced) to the 9th February 2012, while Table 4.1 

summarizes the main statistics for this series. From Figure 4.1, we can infer that the VIX-
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VSTOXX futures prices difference series appears to be stationary and also characterized by 

ARCH effects. Both features are confirmed by the ADF and ARCH test results, respectively (see 

Table 4.1) which are significant even at the 1% level. 

 

Mean -3.7769***  

t stat mean -48.3589 

Std dev 2.0649 

Min -11.65 

Max 2.15 

Skewness -0.8444*** 

t stat skew -9.1145 

Excess 
Kurtosis 

0.8628*** 

t stat kurt 4.6562 

ARCH test 273.59*** 

ADF test -4.168378*** 

Table 4.1: Summary Statistics for the VIX-VSTOXX Futures Difference 

Notes: The summary statistics are of the difference between the VIX and VSTOXX nearest maturity futures 

prices, from 30
th

 April 2009 to 9
th

 February 2012. Asterisks denote significance at 10% (*), 5% (**) and 

1%(***). The standard error of the sample mean is equal to the sample standard deviation, divided by the 

square root of the sample size, while the standard errors are approximately (6/T)1/2
 and (24/T)1/2

 for the sample 

skewness and excess kurtosis, respectively, where T is the sample size.  

 

The difference between the nearest futures prices of the two volatility indices appears significant 

and negative, which means that the volatility implied by the EURO STOXX 50 options was 

significantly (expected to be) higher than that of S&P 500 options, at least for the period under 

consideration. The series also exhibits non-normality features in the higher moments – namely 

significant negative skewness and significant positive kurtosis – further advocating the use of 

GARCH modelling which can (at least partially) also explain these features.  

Below we shall estimate a number of models from the GARCH family in order to see which one 

best captures the dynamics of the difference series; furthermore, as models from the GARCH 

family also lend themselves to forecasting applications, we shall also consider the forecasts 

implied by these models. A very brief description of this family of models follows. 

Engle’s (1982) seminal paper introduced the class of autoregressive conditional heteroskedastic 

(ARCH) models, which Bollerslev (1986) generalized into GARCH. Any model pertaining to this 

class of models is essentially formed of two equations:  
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- A conditional mean equation, which is a regression model describing the evolution of the 

financial series under analysis; 

- A conditional variance equation, which describes the conditional variance dynamics; 

A very general specification of a GARCH model is given by: 

 

1

1

( )

(0,1)

({ },{ },{ } 1, 1)

t t t t

t t t

t

t i t j tt

y E y

z

z D

f X i j



 
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
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   



   

  (3) 

In the above set of equations, yt denotes financial time series under analysis, in our case this will 

be the difference series described above; 1( )t tE y    denotes the conditional mean of this 

difference, while εt is a disturbance process. {zt} is a sequence of i.i.d random variables with (zero 

mean and unit variance) probability distribution D. The last equation provides an expression for 

the conditional standard deviation; Xt is a vector of predetermined variables included in the 

information set Ωt, available at time t. 

A plethora of models have been developed in the literature following Engle and Bollerslev’s 

seminal papers, many of them listed in a recent and very useful glossary compiled by Bollerselv 

(2008). In order to find the most appropriate GARCH model to explain the VIX-VSTOXX 

difference (which was shown above to have ARCH effects), we first focus on the specification of 

the mean equation; once we arrived at an optimal model for the mean equation we consider 

alternative error distributions and conditional variance specifications to see which yields the best 

forecasts of the difference.  

We start from the plot of the autocorrelation and partial autocorrelation functions of the 

difference series (see Figures 4.2 and 4.3). These figures reveal a gradually decaying ACF and a 

PACF which decays to zero much faster, taking significantly non-zero values for the first few 

lags and then becoming insignificant, with the exception of very few lags.  
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Figure 4.2  ACF and PACF for the VIX-VSTOXX Nearest Futures Difference 
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Figure 4.3 Significance of the ACs and PACs for the VIX-VSTOXX Nearest Futures Difference 

A model from the ARMA family should be able to account for the autocorrelation in the series. 

Indeed the results in Table 4.2 show that a constrained AR(4) model (with the coefficient on the 

third lag constrained to be equal to zero) is the most parsimonious model that eliminates the 

autocorrelation. It also minimizes the BIC criterion, all terms included in the regression (namely 

the AR(1), AR(2) and AR(4) terms) are significant and the improvements in the other 
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information criteria – AIC, HQIC – as well as the log likelihood are only minimal for some of 

the competing models from Table 4.2. We therefore proceed to GARCH estimation, based on a 

constrained AR(4) mean equation.  

 

Criteria\Mo
del 

AR(1) AR(2) AR(3) AR(4) AR(4) 
constrain 
AR(3)=0 

ARMA
(1,1) 

ARMA
(2,1) 

ARMA
(2,2) 

AIC 3.1435 3.0564 3.0502 3.0313 3.0285 3.0348 3.0279 3.0293 

BIC 3.1566 3.0760 3.0764 3.0640 3.0547 3.0543 3.0540 3.0620 

HQIC 3.146 3.0640 3.0603 3.0439 3.0387 3.0423 3.0380 3.0420 

Log 
likelihood 

-1095.096 -1062.15 -1057.48 -1048.37 -1048.41 -
1056.1
3 

-
1051.2
3 

-
1050.7
2 

AR(1) signif *** *** *** *** *** *** *** *** 

AR(2)  
signif 

- *** *** *** *** - ** NO 

AR(3) signif - - ** NO - - - - 

AR(4) signif - - - *** *** - - - 

MA(1) 
signif 

- - - - - *** *** ** 

MA(2) 
signif 

- - - - - - - NO 

Ljung-Box Autocorr 
at lag 1 

No 
autocorr 
at lag 1, 
but lag 2 
signif 

No 
autocorr 
up to lag 
2, but 
signif at 3 

No 
autocorr 

No 
autocorr 

No 
autoco
rr at 
1% 
signif. 

No 
autoco
rr at 
1% 
signif. 

No 
autoco
rr at 
1% 
signif. 

 
 

Table 4.2 ARMA model selection 
Notes: AIC, BIC, HQIC stand for the Akaike, Bayesian and Hannan-Quinn information criteria. The optimal 

model, according to a particular information criterion, should minimize the respective information criterion. 

The log likelihood should be maximized by the optimal model. Asterisks denote significance at 10% (*), 5% (**) 

and 1%(***). 

 

The GARCH model in (3) now becomes: 

 

0 1 1 2 2 4 4

1

(0,1)

({ },{ },{ } 1, 1)

t t t t t

t t t

t

t i t j tt

y c c y c y c y

z

z D

f X i j



 

  

  

  

    



   

  (4) 

where the error distribution D will be either the normal or the (standardized) Student-t.  

We now turn our attention to the final equation in (4), the conditional variance equation, where 

the focus of a GARCH model lies. Three different variance specifications are considered in this 

paper: the classical symmetric GARCH (1, 1) of Bollerslev (1986) and two asymmetric 

specifications, the exponential GARCH (EGARCH) model of Nelson (1991) and the GJR 
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model, first introduced by Glosten, Jagannathan and Runkle (1993). The choice of these 

particular three versions out of the great variety of GARCH models available is not random. The 

basic GARCH (1, 1) model offers the advantage of having a simple specification of the 

conditional variance equation. This is especially important in a forecasting exercise. Even if more 

elaborate models tend to fit better in sample, parsimonious models are preferred in prediction 

because they have more degrees of freedom. Moreover, previous empirical studies have proved 

that no more than a GARCH (1, 1) is needed to account for volatility clustering.8 However, in 

equity markets, volatility tends to increase more following unexpectedly large negative returns 

than following unexpected positive returns of the same magnitude. To capture this asymmetry in 

volatility, often attributed to the “leverage effect” (i.e. a fall in the market value of a firm will 

increase its degree of leverage), more than a GARCH (1, 1) is needed. Both the GJR and the 

EGARCH models allow for asymmetric responses of volatility to positive and negative shocks 

respectively. Hence, the final equation in (2) will, in turn, take one of the following forms: 
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where 
1, if 0

1( 0) .
0, otherwise

t
t





  


  

Since the variance is always a positive quantity, non-negativity constraints apply for GARCH(1,1) 

and GJR: in both models ω>0, α, β  0; for the latter model, α+ γ 0 is also sufficient for non-

negativity.9 One advantage of the EGARCH model is that it does not necessitate any non-

negativity constraints; Moreover, for the leverage effect to hold we would need γ>0 for the GJR  

and γ<0 for the EGARCH. The coefficients of the GARCH models are estimated using the 

                                                           
8
 For example, Berkowitz and O’Brien (2002) show that VaR forecasts based on  a simple ARMA(1, 1)-

GARCH(1,1) model were at least as accurate as those produced by the complicated structural models 
employed by six large commercial banks. 
9 Parameter conditions that ensure that the conditional variance converges to a finite unconditional 
variance are given in Table x from the appendices. We note that, for all 6 models considered, the 
parameter estimates reported in Table 4.3 satisfy these convergence conditions. 
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technique of Maximum Likelihood (ML). 10  In the interest of clarity, the full details of the 

estimated GARCH models are summarized in Appendix D, while the estimation results obtained 

for alternative GARCH models are reported in Table 4.3 below. 

 

Model 
AR(4)-N-

GARCH(1,1) 

AR(4)-T-

GARCH(1,1) 

AR(4)-N-

GJR 

AR(4)-T-

GJR 

AR(4)-N-

EGARCH 

AR(4)-T-

EGARCH 

Constant -0.2951*** -0.2581*** 
-

0.3381*** 
-0.2934*** -0.3011*** -0.2819*** 

AR(1) 0.5837*** 0.6163*** 0.5758*** 0.6084*** 0.5835*** 0.6083*** 

AR(2) 0.1636*** 0.1627*** 0.1762*** 0.1711*** 0.1766*** 0.1712*** 

AR(4) 0.1701*** 0.1456*** 0.1562*** 0.1369*** 0.1599*** 0.1414*** 

ω 0.0251*** 0.0323** 0.0193*** 0.0232** -0.2042*** -0.1811*** 

α 0.1381*** 0.1142*** 0.0481** 0.0341 0.2586*** 0.2277*** 

β 0.8437*** 0.8547*** 0.8910*** 0.9014*** 0.9753*** 0.9681*** 

λ - - 0.0805** 0.0715* -0.0325 -0.0381 

df - 7.2035*** - 7.4292*** - 7.7875*** 

Log 

Likelihood 
-947.651 -936.259 -946.426 -935.283 -944.298 -934.196 

Table 4.3 GARCH Model Estimation 
 

Note: Asterisks denote significance at 10% (*), 5% (**) and 1%(***). 

 

The results in Table 4.3 show that all GARCH models considered fit very well in sample. For the 

symmetric models (i.e. the normal and Student-t GARCH(1,1) models) all the estimated 

parameters are highly significant. Among the asymmetric specifications considered, only for the 

normal GJR all the model parameters are significant. Although not reported in this table because 

of lack of space, we also estimated GARCH-in-mean versions for all the models in Table 4.3 (i.e. 

we added an additional regressor to the conditional mean equation, which was either the 

conditional variance, or its square root or its natural logarithm). However, the GARCH-in-mean 
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terms were insignificant for all 18 specifications that we estimated and hence results are not 

reported here. 

 

5.  Investment Strategies Based on Our Results 

Knowing that the difference between the VSTOXX and VIX is significant we investigate first 

the following trading strategy. We enter into a cross-country spread, long VSTOXX futures and 

short VIX futures when the difference of the settlement prices for the two contracts is larger 

than 3% and we unwind the first day this difference becomes less than 1%. In Figure 5.1 we 

report the cumulative returns for each leg of the strategy. The profit that could have been made 

is in EUR for the VSTOXX curve and in USD for the VIX curve.  

 

 

Figure 5.1 Cumulative returns from long-short trading strategy using VSTOXX futures and VIX 

futures with nearest maturity. Calculations are for the period 30 April 2009 to 9th February 2012. 
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The trading strategy highlighted above is more profitable for the VSTOXX leg than the VIX leg. 

One explanation is given by the fact that in 2010 and 2011 the European sovereign financial 

crisis led to a higher level of VSTOXX and VSTOXX derivatives in general. 

A potential application of the GARCH modelling results is for the forecasting of the 

VIX-VSTOXX (nearest futures price) difference which in turn can be used to inform trading 

strategies. Figure 5.2 plots the series of one-step ahead forecasts obtained from a AR(4)-Normal-

GJR (see Appendix D, Table D.1 for the exact model specification and Table 4.3, Column 4 for 

the estimation results: this is the best fitting model which also exhibits asymmetry). The model 

parameters are re-estimated daily, using a rolling sample of 500 observations, with 199 

observations used for out-of-sample forecasting. The results depicted in Figure 5.2 show that the 

VIX-VSTOXX Futures difference remains negative for the entire forecasting period (i.e. April 

2011-February 2012). This is not surprising given that during this period the European markets 

have been affected by the recent European sovereign debt crisis, which had a much lesser impact 

on the US market. We also note that our model correctly forecasts the sign of the difference 

throughout the observation period. 

 

Figure 5.2 One-step ahead forecasts of the VIX-VSTOXX nearest Futures Price Difference 
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Given that the VIX-VSTOXX futures price difference is negative throughout our forecasting 

evaluation period (and has a significant negative mean throughout the entire sample), we now 

compare the trading profit obtained for the following long-short strategies:11 

1) Long the nearest maturity (M1) VSTOXX futures and short the nearest maturity VIX 

futures 

2)  (Dynamic long-short strategy): We start the strategy long the nearest maturity VSTOXX 

futures and short the nearest maturity VIX futures the first time our AR(4)-N-GJR 

model forecast an increase of the spread in absolute value and unwind when the model  

signals a reduction in spread. 

3) A second dynamic strategy is given by a signal to trade the spread, long VSTOXX and 

short VIX, when the difference between the daily spread forecast and the current spread 

is greater than a given threshold.  The positions are closed at the end of each day. 

 

 

Figure 5.3 Forecasted change in the VIX-VSTOXX nearest futures price difference 

                                                           
11

 We ignore for the moment any FX risk or indivisibility of the futures contracts and assume that an 
investor has the same exposure to both the VIX and VSTOXX, through their respective futures 
contracts. 
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Note: Since the difference is negative throughout, a positive change will signify a decrease in the VIX-VSTOXX 

nearest futures price difference. 

For the first strategy the cumulative log-return for the VSTOXX leg was 26.14% and for the 

VIX leg was -17.73%.  

The performance of the second trading strategy is illustrated in Figure 5.4. The trading leg 

associated with VIX provides excellent return, offsetting the performance of the VSTOXX leg.  

 

 

Figure 5.4 Performance of dynamic trading strategy. Cumulative log-returns are calculated 

for each leg of the trading strategy.  

Note. Calculations are done for the period 28 April 2011 to 9 February 2012. 

The graph in Figure 5.5 displays the performance of our second dynamic strategy with a 

threshold equal to 0.5. This strategy seems to work much better, taking advantage of the 

excellent forecast of the spread.  
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Figure 5.5 Performance of the second dynamic trading strategy. Every day when the 

difference between the forecast spread and the current spread is greater than 0.5, a long 

position in VSTOXX Futures and short position of VIX Futures is taken. These positions 

are closed at the end of the day. Cumulative log-returns are calculated for each leg of the 

trading strategy.  

Note. Calculations are done for the period 28 April 2011 to 9 February 2012. 

 

6. Conclusions 

The negative correlation between VSTOXX and EURO STOXX 50 is quite stationary and it 

fluctuates mostly between -50% and -95%.  The evolution of the correlation between VIX and 

S&P500 was mixed. There is also a clear discrepancy between the correlation between S&P 500 

and VIX on one side and the correlation between the S&P 500 and the VIX futures with nearest 

maturity. A similar conclusion can be drawn for STOXX. Moreover, it seems that the futures 

with the second maturity produces a closer resemblance to the VIX (VSTOXX). 

We confirm on an extended set of data for VIX and also on a new set of data for VSTOXX that 

these volatility indexes predicted correctly that the contemporaneous realized high volatilities 

observed in the market after market shocks such as Lehman collapse and the euro crisis in 

Europe, were unsustainable and the equity markets will calm down after a short period of time. 
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The first major contribution of the paper is to use the methodology described in Szado (2009) 

and demonstrate that using VIX and VSTOXX futures improves the return-risk profile of 

investment portfolios, particularly during turbulent times. The benefits seem to be larger for 

VSTOXX, although there is less historical data involving futures contracts. 

The second major contribution of this paper is to tackle the data for U.S. and Europe with a 

battery of state-of-the art GARCH models. Identifying a GARCH model that works well with 

data allows investors to engage in directional trading given by the signal produced by the 

GARCH model. We have identified three models that work well, the GARCH (1,1) widely 

known and applied in the literature, the EGARCH and the GJR models that are capable to 

capture the asymmetry behind the leverage effect in equity markets. We have shown how the 

AR(4)-N-GJR model can be employed successfully to trade cross-border volatility futures.  
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Appendices 

Appendix A Descriptive Statistics 

Summary Statistics of VIX (02/01/1990 until 01/03/2012 daily) 
 

 VIX CLOSE VIX HIGH VIX LOW VIX OPEN 

Mean 20.557 21.382 19.882 20.605 

Standard Deviation 8.249 9.024 8.096 8.615 

Skewness 1.949 2.061 1.771 1.906 

Kurtosis 9.763 10.270 8.259 9.124 

ρ1 0.982 0.984 0.987 0.982 

ADF in Level -4.684*** -4.464*** -4.334*** -4.325*** 

 
Summary Statistics of VIX Futures (26/03/2004 until 17/02/2012 daily) 
 

 
VIX Futures 
Settlement Price M1 

VIX Futures 
Settlement Price M2 

VIX Futures 
Settlement Price M3 

Mean 21.608 22.344 22.750 

Standard Deviation 9.895 8.831 8.068 

Skewness 1.696 1.326 1.124 

Kurtosis 6.366 4.996 4.371 

ρ1 0.990 0.992 0.995 

ADF in Level -2.696* -2.282 -2.054 

ADF in First Difference -8.341*** -9.198*** -9.272*** 

 
Summary Statistics of VSTOXX (04/01/1999 until 24/02/2012 daily) 
 

 VSTOXX 

Mean 26.388 

Standard Deviation 8.249 

Skewness 1.380 

Kurtosis 5.401 

ρ1 0.984 

ADF in Level -3.940*** 

 
 
Summary Statistics of VSTOXX Futures (30/04/2009 until 09/02/2012 daily) 
 

 
VSTOXX Futures 
Close Price M1 

VSTOXX Futures 
Close Price M2 

VSTOXX Futures 
Close Price M3 

Mean 24.478 24.071 22.429 

Standard Deviation 11.014 11.764 13.136 

Skewness -0.894 -1.100 -0.895 

Kurtosis 3.814 3.305 2.315 

ρ1 0.859 0.786 0.782 

ADF in Level -2.900** -2.988** -2.479 

ADF in First Difference -8.830*** -13.053*** -9.402*** 

Notes: The optimum number of lags used in the ADF test equation is based on AIC. *, **, and *** denote 

significance at the 10%, 5% and 1% level respectively. ρ1 is first order autocorrelation that is derived using the 

Correlogram. 
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Appendix B Scatterplots of returns for equity and volatility indexes 

 

Figure A1. Scatter plot of pairs of logarithmic returns for VIX and S&P500 between 02-01-1990 

and 01-03-2012. 

 

Figure A2. Scatter plot of pairs of logarithmic returns for VSTOXX and EURO STOXX 50 

between 04-01-1999 and 24-02-2012. 
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Appendix C Portfolio Diversification with Volatility Futures – supplementary results 

C.1 VIX 

Summary stats - log returns, daily rebalancing, non-zero RF rate, but no collateralization of the futures   

All sample (2004- 2012)      

 S&P 500 S&P 500 2.5% VIX 
futures 

S&P 500 
10% VIX 
futures 

S&p 500 
Bonds 

S&P 500 
Bonds   
VIX 
Futures 
2.5% 

S&P 500 
Bonds  
VIX 
Futures 
10% 

Mean return 2.63% 2.60% 2.51% 3.65% 3.59% 3.42% 

Volatility  22.27% 20.47% 16.03% 13.02% 11.51% 8.96% 

Min -9.47% -8.81% -7.14% -5.72% -5.15% -3.84% 

Max 10.96% 10.40% 8.73% 6.57% 6.13% 4.78% 

Annual Sharpe ratio 5.90% 6.27% 7.41% 17.86% 19.71% 23.40% 

VaR 1%(historical) 4.59% 4.25% 3.19% 2.56% 2.22% 1.57% 

VaR 5% (historical) 2.16% 1.99% 1.39% 1.23% 1.05% 0.68% 

subperiod 1: 2004 - 2007      

Mean return 7.57% 7.47% 7.16% 6.16% 6.10% 5.89% 

Volatility  12.10% 10.86% 8.86% 7.23% 6.23% 6.34% 

Min -3.53% -2.80% -1.98% -1.93% -1.44% -1.89% 

Max 2.88% 2.54% 3.21% 1.82% 1.37% 3.37% 

Annual Sharpe ratio 4.21% 4.78% 6.23% 25.26% 28.99% 27.40% 

VaR 1%(historical) 2.35% 2.12% 1.41% 1.22% 1.01% 0.78% 

VaR 5% (historical) 1.27% 1.12% 0.81% 0.76% 0.65% 0.45% 

subperiod 2: 2008-2012      

Mean return -1.85% -1.82% -1.72% 1.36% 1.31% 1.16% 
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Volatility  28.53% 26.33% 20.48% 16.62% 14.76% 10.81% 

Min -9.47% -8.81% -7.14% -5.72% -5.15% -3.84% 

Max 10.96% 10.40% 8.73% 6.57% 6.13% 4.78% 

Annual Sharpe ratio -7.49% -8.00% -9.80% 6.40% 6.91% 8.11% 

VaR 1%(historical) 5.38% 4.95% 3.90% 3.11% 2.77% 1.84% 

VaR 5% (historical) 2.92% 2.70% 1.90% 1.62% 1.37% 0.94% 

short crisis subperiod: 2008      

Mean return -50.80% -47.89% -39.14% -28.30% -25.94% -18.89% 

Volatility  41.41% 38.70% 31.11% 24.36% 22.10% 16.40% 

Min -9.47% -8.81% -7.14% -5.72% -5.15% -3.84% 

Max 10.96% 10.40% 8.73% 6.57% 6.13% 4.78% 

Annual Sharpe ratio -125% -126% -129% -120% -122% -121% 

VaR 1%(historical) 8.60% 8.05% 6.62% 5.16% 4.69% 3.40% 

VaR 5% (historical) 4.63% 4.63% 4.63% 4.63% 4.63% 4.63% 

 

Summary stats - relative returns, daily rebalancing, non-zero risk-free rate, but no 
collateralization of the futures 

  

All sample (2004- 2012)      

 S&P 500 S&P 500 2.5% VIX 
futures 

S&P 500 
10% VIX 
futures 

S&p 500 
Bonds 

S&P 500 
Bonds   
VIX 
Futures 
2.5% 

S&P 500 
Bonds  
VIX 
Futures 
10% 

Mean return 5.11% 5.82% 7.96% 5.16% 5.87% 8.01% 

Volatility  22.25% 20.44% 16.06% 13.00% 11.49% 9.10% 

Min -9.03% -8.37% -6.68% -5.46% -4.86% -3.71% 

Max 11.58% 11.02% 9.35% 6.95% 6.51% 5.18% 

Annual Sharpe ratio 17.04% 22.03% 41.33% 29.56% 39.63% 73.46% 

VaR 1%(historical) 4.49% 4.08% 3.06% 2.50% 2.14% 1.43% 
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VaR 5% (historical) 2.14% 1.96% 1.35% 1.22% 1.03% 0.66% 

subperiod 1: 2004 - 2007      

Mean return 8.30% 8.82% 10.36% 6.62% 7.18% 8.85% 

Volatility  12.09% 10.86% 9.03% 7.23% 6.23% 6.63% 

Min -3.47% -2.65% -1.90% -1.89% -1.40% -1.59% 

Max 2.92% 2.59% 3.95% 1.84% 1.41% 4.11% 

Annual Sharpe ratio 24.97% 34.79% 66.93% 46.58% 65.98% 95.94% 

VaR 1%(historical) 2.33% 2.09% 1.37% 1.20% 0.99% 0.76% 

VaR 5% (historical) 1.27% 1.11% 0.78% 0.76% 0.65% 0.49% 

subperiod 2: 2008-2012      

Mean return 2.21% 3.10% 5.77% 3.84% 4.69% 7.24% 

Volatility  28.50% 26.28% 20.46% 16.60% 14.73% 10.88% 

Min -9.03% -8.37% -6.68% -5.46% -4.86% -3.71% 

Max 11.58% 11.02% 9.35% 6.95% 6.51% 5.18% 

Annual Sharpe ratio 6.74% 10.70% 26.81% 21.37% 29.86% 63.88% 

VaR 1%(historical) 5.24% 4.80% 3.67% 3.03% 2.68% 1.74% 

VaR 5% (historical) 2.88% 2.62% 1.85% 1.60% 1.35% 0.90% 

short crisis subperiod: 2008      

Mean return -42.23% -38.41% -26.98% -23.08% -19.75% -9.75% 

Volatility  41.37% 38.65% 31.06% 24.33% 22.06% 16.38% 

Min -9.03% -8.37% -6.68% -5.46% -4.86% -3.71% 

Max 11.58% 11.02% 9.35% 6.95% 6.51% 5.18% 

Annual Sharpe ratio -104% -101% -90% -98% -94% -65% 

VaR 1%(historical) 8.24% 7.67% 6.23% 4.94% 4.46% 3.16% 

VaR 5% (historical) 4.52% 4.52% 4.52% 4.52% 4.52% 4.52% 
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2008: S&P and VIX futures, daily rebalancing, portfolio weights based on diagonal-VECH multivariate GARCH model  

short crisis subperiod: 2008 

Mean return 8.99% 

Volatility  69.02% 

Min -13.52% 

Max 15.67% 

Annual Sharpe ratio 11.64% 

VaR 1%(historical) 11.75% 

VaR 5% (historical) 8.30% 

 

C.2 VSTOXX 

Summary stats - log returns, daily rebalancing, zero RF     

All sample (2009- 2012)       

 EURO 
STOXX 50 

97.5% EURO 
STOXX 50 2.5% 
VSTOXX futures 

90% 
EURO 
STOXX 50 
10% 
VSTOXX 
futures 

EURO 
STOXX 
Bonds 

EURO STOXX 
Bonds   VIX 
Futures 2.5% 

EURO 
STOXX 
Bonds  
VIX 
Futures 
10% 

Mean return 2.17% 1.80% 0.67% 3.17% 2.77% 1.56% 

Volatility  25.49% 23.47% 18.09% 15.08% 13.36% 9.57% 

Min -6.54% -6.01% -5.35% -3.91% -3.41% -3.19% 

Max 9.85% 9.19% 7.24% 6.34% 5.77% 4.08% 

Annualized Sharpe ratio 8.53% 7.66% 3.71% 20.99% 20.69% 16.34% 

VaR 1%(historical) 4.37% 3.96% 2.77% 2.73% 2.14% 1.40% 

VaR 5% (historical) 2.59% 2.35% 1.83% 1.59% 1.36% 0.91% 
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Summary stats -log returns, daily rebalancing, with non-zero risk-free rate but no 
collateralization of the futures 

  

All sample (2009- 2012)       

 EURO 
STOXX 
50 

97.5% EURO 
STOXX 50 2.5% 
VSTOXX 
futures 

90% EURO 
STOXX 50 10% 
VSTOXX 
futures 

EURO 
STOXX 
Bonds 

EURO 
STOXX 
Bonds   VIX 
Futures 2.5% 

EURO 
STOXX 
Bonds  
VIX 
Futures 
10% 

Mean return 2.17% 1.80% 0.67% 3.17% 2.77% 1.56% 

Volatility  25.49% 23.47% 18.09% 15.08% 13.36% 9.57% 

Min -6.54% -6.01% -5.35% -3.91% -3.41% -3.19% 

Max 9.85% 9.19% 7.24% 6.34% 5.77% 4.08% 

Annualized Sharpe ratio -6.80% -8.98% -17.89% -4.92% -8.55% -24.48% 

VaR 1%(historical) 4.37% 3.96% 2.77% 2.73% 2.14% 1.40% 

VaR 5% (historical) 2.59% 2.35% 1.83% 1.59% 1.36% 0.91% 

 

 

Summary stats -relative returns, daily rebalancing, with non-zero risk-free rate but no 
collateralization of the futures 

  

All sample (2009- 2012)       

 EURO 
STOXX 50 

97.5% 
EURO 
STOXX 50 
2.5% 
VSTOXX 
futures 

90% EURO 
STOXX 50 
10% VSTOXX 
futures 

EURO 
STOXX 
Bonds 

EURO 
STOXX Bonds   
VIX Futures 
2.5% 

EURO 
STOXX 
Bonds  
VIX 
Futures 
10% 

Annualized Mean return 5.42% 5.73% 6.65% 5.13% 5.45% 6.39% 

Volatility (annualized) St dev 25.51% 23.49% 18.12% 15.10% 13.37% 9.66% 

Min -6.33% -5.81% -5.21% -3.79% -3.25% -3.10% 
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Max 10.35% 9.71% 7.81% 6.64% 6.10% 4.48% 

Annualized Sharpe ratio 5.92% 7.74% 15.12% 8.11% 11.51% 25.71% 

VaR 1%(historical) 4.28% 3.86% 2.69% 2.67% 2.07% 1.38% 

VaR 5% (historical) 2.55% 2.32% 1.78% 1.57% 1.34% 0.88% 

 

 

 

 

 

Summary stats -relative returns, daily rebalancing, with non-zero risk-free rate, with collateralization of the 
futures  

 

All sample (2009- 2012)       

 EURO 
STOXX 50 

97.5% EURO 
STOXX 50 
2.5% 
VSTOXX 
futures 

90% EURO 
STOXX 50 10% 
VSTOXX 
futures 

EURO 
STOXX 
Bonds 

EURO 
STOXX Bonds   
VIX Futures 
2.5% 

EURO 
STOXX 
Bonds  
VIX 
Futures 
10% 

Annualized Mean return 5.42% 5.83% 7.04% 5.13% 5.55% 6.79% 

Volatility (annualized) St dev 25.51% 23.49% 18.12% 15.10% 13.37% 9.66% 

Min -6.33% -5.81% -5.21% -3.79% -3.25% -3.10% 

Max 10.35% 9.71% 7.82% 6.64% 6.10% 4.48% 

Annualized Sharpe ratio 5.92% 8.16% 17.30% 8.11% 12.25% 29.79% 

VaR 1%(historical) 4.28% 3.86% 2.69% 2.67% 2.07% 1.38% 

VaR 5% (historical) 2.55% 2.32% 1.78% 1.57% 1.34% 0.88% 
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Appendix D: GARCH Models 

Model Name Variance Model Specification 
Condition for finite 

unconditional variance 

AR(4)-N-

GARCH(1,1)  

0 1 1 2 2 4 4

2 2 2

1 1

0,1

t t t t t

t t t

t

t t t

y c c y c y c y

z

z N



 

   

  

 

    



  

 

 

1  

  

AR(4)-T-

GARCH(1,1)  

0 1 1 2 2 4 4

2 2 2

1 1

0,1

t t t t t

t t t

t

t t t

y c c y c y c y

z

z Student t



 

   

  

 

    





  

 

1  

 

AR(4)-N-GJR 
 

0 1 1 2 2 4 4

2 2 2 2
11 1 1

0,1

1( 0)

1, if 0
1( 0) .

0, otherwise

t t t t t

t t t

t

tt t t t

t
t

y c c y c y c y

z

z N



 

     




  

  

    



    


  



 

1
2


   
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AR(4)-T-GJR 
 

0 1 1 2 2 4 4

2 2 2 2
11 1 1

0,1

1( 0)

1, if 0
1( 0) .

0, otherwise

t t t t t

t t t

t

tt t t t

t
t

y c c y c y c y

z

z Student t



 

     




  

  

    





    


  



 

1
2


     

AR(4)-N-

EGARCH 

 

1 1

0 1 1 2 2 4 4

2 2

1
2 2

1 1

0,1

2
ln( ) ln( )

t t

t t t t t

t t t

t

t t

t t

y c c y c y c y

z

z N



 

 
     

 

 

  



 

    



 
     
  

 

Not applicable 

(variance always 

converges to a finite long 

term mean) 

AR(4)-T-

EGARCH 

 

1 1 1

0 1 1 2 2 4 4

2 2

1
2 2 2

1 1 1

0,1

ln( ) ln( )
t t t

t t t t t

t t t

t

t t

t t t

y c c y c y c y

z

z Student t

E



 

  
     

  

  

  



  

    





  
      
    

 

 0     

 


